IFS Engine Test Bench

Institute of Automotive Engineering

Chair in Automotive Powertrains

Director: Prof. Dr.-Ing. Michael Bargende

Chair holder: Prof. Dr.-Ing. Michael Bargende

Main research areas

In addition to the application and basic research-oriented teaching activities in the field of vehicle drives, the staff of the Chair of Automotive Powertrains also conduct research in the area of "Increasing efficiency and minimizing emissions and noise of vehicle drives". The focus is on the systemic optimization of internal combustion engine drives (gasoline and diesel engines) as well as hybrid and fuel cell drives.

The Chair of Vehicle Propulsion Systems focuses on the following areas:

Research areas

Hybrid drive

48V mild hybrid (MHEV) with partially homogeneous diesel combustion

Project duration: 01.01.2018 - 30.09.2020

Contact: Jan Klingenstein, M.Sc. and Andreas Schneider, M.Sc.

Abstract:

In the course of the increasingly stringent exhaust gas legislation and the planned introduction of type approval in real driving operation, ways must be found especially for the diesel engine to reduce the comparatively high nitrogen oxide and particulate emissions. In addition to the electrification of the powertrain, the adaptation of a partially homogeneous combustion process offers a further solution for mitigating this conflict of objectives. Especially for transient engine operation, the pronounced sensitivity of the partially homogeneous combustion to changed boundary conditions in the air and fuel path requires an exact control behavior of the combustion engine. The increased hydrocarbon emissions associated with this alternative combustion process require the use of an electrically heated catalytic converter in conjunction with the 48V on-board electrical system of a mild diesel hybrid. The aim of this research project is to develop and optimise the operating strategy for a diesel hybrid system with partially homogeneous combustion, taking exhaust aftertreatment into account. A phlegmatisation of the diesel engine with adapted combustion control allows the compensation of the air path inertia in transient phases and thus a further reduction of emissions. Within the framework of the project applied for, the concept for real, RDE-relevant driving conditions is to be optimised. If the test vehicle proves in the project that a concept in urban areas leads to a reduction of pollutant pollution, this is of overall economic and social interest.

Focus: Fuel and pollutant reduction through homogeneous diesel combustion process and electrification of the powertrain.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Powertrain 2040

Project duration: 01.04.2019 – 30.09.2021

Contact: Tobias Stoll, M.Sc.

Project Partners: University of Stuttgart, Institute for Acoustics and Building Physics (IABP)

Abstract:

Combinations of different powertrain concepts (combustion engines as hybrid or range extenders, fuel cells and pure e-vehicles) shall be simulated. Used components (engine type and size, gearboxes, direct drive option or not, battery size, etc.) shall be varied and simulated/optimised for different vehicle classes (see above). Fuel, electricity and component cost shall be varied to evaluate CO2 impact and TCO.

Focus: CO2 reduction

Comparison of consumption and environmental impact (CO2 emissions) of various future powertrain technologies over the entire life cycle of a vehicle.

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Motor Acoustic Tribology Friction

Piston Pin Bearing II

Project duration: 01.04.2017 bis 31.03.2020

Contact: Denise Branciforti, M.Sc.

Project Partners:

University of Kassel, Institute for Automotive Engineering

HAWK, Hildesheim/Holzminden/Göttingen

Institute for Analytical Measurement Technology Hamburg e. V., IAM-Hamburg e. V.

Abstract:

Increasing the operational safety of piston pin bearing arrangements. Within the framework of the completed research project "Piston pin bearing arrangements", the local temporal and spatial lubricant film formation in the piston- and conrod-side pin bearings could be identified as a significant influencing variable on the movement and load-bearing behaviour of the piston pin. Up to now, however, only insufficient knowledge is available about the exact transport mechanisms for the lubricant supply of the pin bearings, which are necessary for a simulation of the lubrication conditions at the bearing edges and inside. The aim of the project is to achieve an operationally reliable design of the piston pin bearing arrangement through an improved understanding of the oil supply situation and the identification of critical mixed friction and partial filling conditions. Experimental investigations will provide precise information on time-varying solid contacts in the bearing points, as well as friction coefficient maps depending on temperature, material pairing and lubricant condition. The results are compared with the simulation results and lead - based on the existing software - to an improved simulation model for the analysis and optimization of the piston pin bearing. With the help of the experimental and simulative findings, damage-relevant mechanisms are defined with the aim of achieving a reliable design and reducing CO2 emissions by minimizing friction.

Focus: Improvement of operational safety of piston pin bearing.

Definition of damage-relevant mechanisms of the piston pin bearing - reliable design and reduction of CO2 emissions by minimizing friction.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations / Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Piston Conrod Dynamics II

Project duration: 01.01.2014 - 31.12.2016

Contact: Dipl.-Ing.  Wolfgang Gross

Project Partners:

University of Kassel, Institute for Automotive Engineering

Abstract:

Driven by stricter emission and fuel consumption regulations modern DI-Diesel enginies exhibit increasing combustion pressures. High combustion pressure in combination with high pressure gradients act as broadband excitation force, which stimulates natural vibrations of piston, conrod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, conrod and crankshaft and the main bearings represent the system of internal vibration transfer which dominates the engine noise, as described in [1] and [2]. Based on the work carried out in the previous project “Piston Conrod Dynamics” this project serves to improve and extend the level of knowledge concerning the acoustic behavior of a modern EU6-Diesel engine with lightweight design components. To achieve this goal experimental and analytical investigations are carried out. First the modal behavior of single components and then the dynamic properties of the entire moving system were examined in detail in simulation and test as a base for the investigations. A successful correlation between experimental modal analysis (EMA) and Finite Element Analysis (FEA) forms the basis of model validation. The experimental investigations under fired conditions were done in an anechoic test bench to generate exact input and validation values for simulation models of structural dynamic and elastohydrodynamic coupled multi body systems. The measured values of combustion pressure, airborne and structure-borne sound allowed to identify the engine´s vibrational behavior in the whole operating range. After definition of a reference operating point various test series were carried out, such as injection timing and temperature variation. To understand the behavior of the conrod as the key component in more detail its elongation at the conrod shank during engine operation was also measured. The usage of semiconductor strain gauges allowed the recording of the natural vibrations of the conrod in a very accurate way up to a frequency about 10 kHz. Furthermore temperature measurements of piston and liner under fired conditions, allowed the determination of their warm contours using inverse methods. Variation of injection timing and conrod stiffness demonstrated main drivers for the dynamic behavior. In a further step measurement of the oil film thickness between the liner and the piston generated an improvement understanding of an unknown quantity in the simulation model. For this purpose the combination of inductive and capacitance measurements were used.

Focus: Calculation and measurement verification of dynamic contact forces between the piston and cylinder, taking into account transient thermal boundary conditions.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations / Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Firing Friction Measurement Methodology

Project duration: 01.04.2018 - 31.09.2020

Contact: Kevin Huttinger, M.Sc.

Project Partners:

University of Kassel, Institute for Automotive Engineering

Abstract:

Increasing combustion pressure is inevitable in engine displacement reduction (downsizing). Even if the durability of the engines can be maintained, it is not desirable to increase the friction losses.
The friction depends mainly on the combustion pressure curve. In general, friction is assumed to be dependent on the magnitude of the combustion pressure. Depending on the characteristic of the pressure curve, i. e. magnitude and crank angle position of the peak pressure friction differences occur despite constant IMEP and engine speed. The reason is probably the change in lubrication condition. In engine development, the combustion pressure curve varies with the operating point and engine type, so the design should be optimized by taking this effect into account. In recent years the frequency of operating at low oil temperatures e.g. due to HEV has increased, which is why the optimization over a wide temperature range should be done. Therefore, the lubrication conditions and the friction as a function of the combustion pressure curve and the oil temperature have to be precisely simulated and validated by high-precision testing and measuring technology. As a result, the combustion process and oil temperature can be optimized at an early stage of development. At the same time, it should be possible to achieve equivalent durability with inexpensive bearings. Finally, it is desirable to to use the model within the FVV cylinder module.

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

 

Reduction of Friction Losses by Local Management of the Oil Temperatures

Project duration: 01.11.2014 - 31.05.2018

Contact: Kevin Huttinger, M.Sc.

Abstract:

In real road traffic or in the NEDC cycle, car and truck engines are only operated at moderate loads and speeds. The oil temperatures occurring under these operating conditions are therefore far below the maximum permissible temperatures on which the operationally stable design of the engines was based. Due to the lower oil temperatures, however, the oil viscosities are much higher than the minimum permissible viscosities. This results in higher hydrodynamic friction losses than for operation at maximum oil temperature. Due to the low loads (cylinder pressures) in the operating ranges under consideration, the mixed friction component is low, so that this statement is also largely valid for the sum of hydrodynamic and mixed friction losses. By means of a controlled regulation of the oil supply temperature dependent on the operating condition (cylinder pressure, speed, etc.), oil at an elevated temperature should be supplied to the bearing points for "moderate operating conditions". It must be ensured by design that the bearing points are supplied with cooler oil as soon as the operating condition changes. The aim of the project should be, among other things, to measure and experimentally prove the reduction in frictional power.

Focus: Measurement and experimental verification of the friction power reduction. - Proof of a fast switchover to an oil supply with lower temperatures.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Projektlaufzeit 01.06.2017 bis 31.05.2020

Projektpartner

Universität Stuttgart

IFS Lehrstuhl

Fahrzeugantriebe

Herr Prof. Dr.-Ing. M. Bargende

Herr Dipl.-Ing. Hans-Jürgen Berner

Ansprechpartner

Lehrstuhl Fahrzeugantriebe

Prof. Dr.-Ing. M. Bargende 

Hans-Jürgen Berner

Telefon 0711 685-65714

Optische Strahl-Analyse zur verbesserten 3D-CFD Simulation der Kraftstoff-Einspritzung in QuickSim

Ziel des Vorhabens ist die Nutzung eines PDA-Labors zur Durchführung optischer Kraftstoffstrahlanalysen, unter Verwendung unterschiedlichster Injektorgeometrien, zur grundlegenden Validierung der numerischen Beschreibung von Einspritzprozessen in der schnellen 3D-CFD Simulation (QuickSim) von Verbrennungsmotoren. Dazu müssen die laseroptischen Elemente des PDAPrüfstands hochpräzise ausgerichtet und justiert werden. Anschließend soll die Prüfstandssoftware ergänzt und nach einer Sensitivitätsanalyse der Toolkette in eine automatisierte Messdatenauswertung eingebettet werden. Durch die zeitliche und örtliche Sprayentwicklung, die sich aus den gemessenen Geschwindigkeits- und Tropfengrößenverteilungen ergibt, können die Startbedingungen des 3D-CFD Simulationstools QuickSim validiert und in einem iterativen Prozess verbessert werden.

Kernziele des Vorhabens sind Die sprayspezifischen Startbedinungen in der 3D-CFD Software QuickSim sollen auf der experimentellen Basis eines PDA-Prüfstandes, der dazu justiert und automatisiert werden muss, validiert und iterativ verbessert werden.

Fördermittelgeber Promotionsstipendium der Vector Stiftung

Modelling of Turbulence II

Project duration: 01.07.2016 - 31.07.2019

Contact: Sven Fasse, M.Sc.

Abstract:

Development of dynamic charge movement indices for quasidimensional turbulence modelling and dynamic flow coefficients for a more accurate charge exchange calculation.

So far, valve flow coefficients have been determined separately for inlet and outlet side, at low pressure ratio and synchronous valve lift. In real engine operation, the flow coefficients often deviate from this, partly due to valve train variability. These cases are now to be modeled for the 0D/1D engine simulation. This also includes the conversion of a previously empirical to a phenomenal inflow turbulence model and the extension of an existing tumble charge movement and turbulence model for combined swirl-tumble charge movements.

Focus:

  • Development of valve flow coefficients for high pressure conditions, flow pulsation, valve overlap and inlet valve lift phase/channel shut-off
  • Development of a phenomenological inflow turbulence model
  • Development of a charge movement and turbulence model for combined twist-tumble charge movement

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Homogenisation Model SI Engine

Project duration: 01.01.2017 - 30.06.2019

Contact: Sebastian Fritsch, M.Sc.

Abstract:

Due to numerous advantages, direct injection can be considered a standard technology in modern gasoline engines. Its influence on in-cylinder turbulence, however, cannot be accounted for in existing zero- and one-dimensional models. The objective of this project is thus to develop corresponding sub-models and to integrate them in existing turbulence, burn rate and cycle-to-cycle variation models. In this way, a valuable increase in predictive power can be achieved. The solution process follows the approach of the successful predecessor project. At first, the influence of direct injections on charge motion (e. g. tumble) is to be analyzed based on 3d-CFD calculations in order to enhance the existing turbulence model. Correspondingly, 3d-CFD simulations are used as reference to develop a phenomenological homogenization model based on key parameters of the gas exchange cycle, the enhanced charge motion and turbulence model and characteristic numbers (to be developed). The homogenization model then has to be integrated in an appropriate way into the existing burn rate and cycle-to-cycle variation models. As a result, improved models will be available that allow predictive simulations of the influence of direct injections for the first time in the 0d/1d domain. This enables, for instance, an efficient development of multiple injection strategies for improved mixture homogenization as well as accounting for differences in homogenization when using variable valve timings.

Focus: Development of a quasi-dimensional model describing the interaction of direct injection and charge motion as well as homogenisation of the trapped mass considering different gas exchange strategies

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Thermodynamics Top Land Volume

Project duration: 01.01.2017 - 31.03.2020

Contact: Dipl.-Ing. Hans-Jürgen Berner, Markus Koch, M.Sc.

Abstract:

Analysis and physically/chemically based modeling through an energy-balance of the influences of the time-varying unburnt mass fraction in wall proximity and in the top land. At first, the influence of near wall zones and the top land volume on the combustion chamber in the combustion phase after reaching peak pressure shall be investigated experimentally with a focus on modeling. Based on these findings, a model to describe the near wall phenomenon of the heat release through an energy-balance shall be developed. A better understanding of the interactions between top land volume and combustion chamber is a necessary boundary condition to describe the effects of the unburnt mixture mass in the top land and to make it useable in analysis and simulation.

Focus: A better understanding of the interaction between top land volume and combustion chamber Description of the effects of the unburnt mixture mass in the top land.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations / Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Methane Fuels II

Project duration: 01.04.2016 - 31.12.2019

Contact: Dipl.-Ing. Marcel Eberbach und Sebastian Hann, M.Sc.

Abstract:

Identifying, quantifying and modelling of the impact of selected components of methane-based fuels on the heat release in Otto-cycle operation.

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

 

Projektlaufzeit 15.04.2016 bis 14.04.2019

Projektpartner  Audi AG

Ansprechpartner

Lehrstuhl Fahrzeugantriebe

Herr Prof. Dr.-Ing. M. Bargende 

Dipl.-Ing. Hans-Jürgen Berner

Telefon +49 711 685-65714

Methodische Untersuchung und ganzheitliche Potentialbewertung zukünftiger Antriebskonzepte zur CO2 - Neutralität im Rennsport

Die globale Erwärmung aufgrund von Treibhausgasemissionen stellt eine der größten Herausforderungen für die Menschheit dar und fordert die Automobilindustrie. Aufgrund seiner Vorreiterrolle ist auch der Motorsport mit dieser Problemstellung konfrontiert und hat die Aufgabe die Entwicklung von technischen Lösungen zur Reduzierung der Umweltauswirkungen voranzutreiben. Erste Schritte in Richtung Nachhaltigkeit sind die Effizienzreglements, die 2014 in der FIA Formel 1 und der FIA World Endurance Championship eingeführt wurden, sowie die Beimischung von Biokraftstoffen und die Einführung von Hybridsystemen in diesen beiden Rennserien. Der Fokus auf globale Nachhaltigkeit und die Integration dieses Aspektes in das Reglement steht jedoch noch aus. Daher werden im Rahmen des Promotionsprojektes nachhaltige Hochleistungskonzepte für den Langstreckenrennsport ganzheitlich umweltbilanziell und technologisch untersucht.

Kernziele des Vorhabens sind

Umweltbilanzielle und technologische Untersuchung diverser Antriebskonzepte und Kraftstoffe für den Einsatz in einem nachhaltigen Motorsport der Zukunft.

Completed Projects

Auswirkungen von instationären Anströmeffekten auf die Fahrzeugaerodynamik   

Projektlaufzeit: 36 Monate (abgeschlossen 2020)

Projektpartner: Deutsches Zentrum für Luft- und Raumfahrt (DLR) Göttingen

Ansprechpartner

Lehrstuhl Kraftfahrwesen Leitung:

Prof. Dr.-Ing. Andreas Wagner/

Prof. Dr.-Ing. J. Wiedemann

Dr.-Ing. Felix Wittmeier

Telefon +49 711 685-69464

Auswirkungen von instationären Anströmeffekten auf die Fahrzeugaerodynamik

Die Aerodynamik eines Fahrzeugs wird nach aktuellem Stand der Technik im Serienentwicklungsprozess unter stationären Anströmbedingungen mit möglichst geringer Turbulenz optimiert. Dies simuliert unter Zuhilfenahme der Bodensimulation und Raddrehung das Fahren durch ruhende Luft. Dabei wird der Einfluss von Umwelt- und Umgebungsbedingungen, wie zum Beispiel böiger Seitenwind oder andere Verkehrsteilnehmer nicht beachtet. Zwar wird bereits heute mit Hilfe von Winkelreihen der Einfluss einer Seitenwindkomponente auf das Fahrzeug untersucht, jedoch stellt diesen nur den stationären Fall eines konstanten Seitenwinds dar. Allerdings ist zu beachten, dass die Anströmsituation neben den instationären Einflüssen des natürlichen Windes auch anderen Einwirkungen unterliegt, die beispielsweise durch andere Verkehrsteilnehmer hervorgerufen werden. Dadurch werden die Anströmgeschwindigkeiten und -winkel auf der Straße kontinuierlich beeinflusst. Folglich ist die Anströmsituation eine zeitlich veränderliche Größe. Veranschaulicht werden kann dies durch das Fahren im Nachlaufgebiet vorherfahrender Fahrzeuge oder die Interaktion mit einem überholenden oder entgegenkommenden Fahrzeug. Versuche haben gezeigt, dass die real auf der Straße auftretenden Anströmbedingungen mit der beschriebenen Vorgehensweise im Windkanal bisher nicht ideal abgebildet werden können. Eine Ursache dafür ist die stationäre Betrachtung, bei der nur sehr geringe Turbulenzen in der Anströmung vorliegen. Um den Luftwiderstand auch bei realistischer Straßenfahrt zu optimieren, werden neue Ansätze und Methoden benötigt anhand derer der Einfluss der instationären Anströmung auf das Fahrzeug erfasst und analysiert werden kann. Dies ist Inhalt des hier vorgestellten, vom Arbeitskreis 6 (Aerodynamik) der Forschungsvereinigung Automobiltechnik (FAT) geförderten, Projekts. Die Entwicklung und Bewertung einer Methode zur Bestimmung der realen aerodynamischen Beiwerte unter Berücksichtigung der Implementierung in den Fahrzeugentwicklungsprozess ist das Hauptziel dieses Forschungsprojekts. Mit einer solchen Methode sollen die real durch die Aerodynamik verursachten CO2-Emissionen ermittelt und gezielt weiter reduziert werden können.

Im Arbeitskreis 6 der FAT sind Vertreter aller deutschen Automobilhersteller vertreten, so dass die Ergebnisse direkt in die Entwicklung neuer Fahrzeuge einfließen können

Kernziele des Vorhabens sind

Bestimmung der realen Anströmbedingung bei Straßenfahrt; Entwicklung einer Untersuchungsmethode, um die realen Anströmbedingungen im Windkanal und in CFD darzustellen; Untersuchung der am Fahrzeug auftretenden aerodynamischen Effekte aufgrund der instationären Anströmung.

Projektförderung Fördermittelgeber Forschungsvereinigung Automobiltechnik (FAT) AK-6 Aerodynamik

Abschlussbericht

Fuel Composition for CO2 Reduction

Project duration: 01.03.2019 - 28.02.2022

Contact: Sebastian Croenert, M.Sc.

Project Partners:

RWTH Aachen, Institute for Combustion Engines (VKA)

RWTH Aachen, Physico-Chemical Fundamentals of Combustion (ITV)

Brandenburg University of Technology Cottbus-Senftenberg, Institute for Electrical and Thermal Energy Systems, Chair of Thermodynamics/Thermal Process Engineering

Abstract:

Economic motivation: Reducing CO2 emission is world-wide common issues. To correspond to the issues throughout the world, new generation fuels which enhance flame propagation and mitigate knocking should be considered in addition to the argument on E-fuel. The new generation fuels enhance engine thermal efficiency and reduce emission.
Scientific motivation: Low temperature combustion and mitigating knocking are effective ways to enhance engine thermal efficiency. To realize the concepts, understanding the effect of turbulence intensity and chemical reaction on combustion is necessity. Since this understanding is fundamental research , the scope of application is wide, such as combustion modeling and elementary reaction modeling.

Focus: The object is to clarify the effect of new generation fuels on how they contribute to enhance thermal efficiency and reduce emissions.

Funding: Research Association for Combustion Engines eV.

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Engine Knock Model

Project duration: 01.06.2018 – 30.11.2020

Contact: Marco Hess, M.Sc.

Project Partners:

RWTH Aachen, Institute for Combustion Engines (VKA)

RWTH Aachen, Physico-Chemical Fundamentals of Combustion (ITV)

Abstract:

Knocking is one of the most important design limit for turbo SI engines. At the same time, it is one of the most difficult phenomena to predict in 0D/1D simulation. This results in a significant limitation regarding the predictive ability of 1D models of turbo SI engines, e.g. when used in concept studies. The last work within the FVV on 0D knock models took place mainly from 1998-2001 (project "Knock criterion"), some additions followed in the project "Efficiency optimized SI engine II" (2009).

In the last 15 years since the FVV-project "Knock criterion", engine technology has developed (the FVV-project "Knock criterion" was still carried out on a naturally aspirated engine in 2009) and many experiences have been gained with the models from 2001 and 2009. This results in a wide range of ideas for possible model improvements and extensions.

Previous and requested FVV-projects for the further development of the 0D/1D knock models are limited to special applications (e.g. EGR at full load, methane fuels). A further development of the "basic knock model" did not take place in the last 15 years, although FVV-members could gain many experiences with this model.

The aim of this project is the further development of the "basic model" in order to achieve a higher prediction quality. On the one hand, this further development should address model limits and uncertainties in current applications, on the other hand, at the same time the model should be validated for future requirements or extended if necessary.

Focus: Further development of knock models for the 0D/1D engine process calculation for current and future requirements. Further development of the "Basic Knock Model for 0D/1D".

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations.

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Project duration: 01.08.2016 - 29.02.2020

Contact: Qirui Yang, M.Sc.

Project Partners:

TU Berlin, Institute of Land and Sea Transport Systems (VKM)

Brandenburg University of Technology Cottbus-Senftenberg, Institute for Electrical and Thermal Energy Systems, Chair of Thermodynamics/Thermal Process Engineering

Abstract:

The aim of the proposed research is to investigate the interaction between Diesel engine operating parameters on exhaust emissions, fuel consumption and exhaust gas temperature. Specifically, the impact of variable valve timing (VVT) on these parameters will be analysed with focus on the prediction of engine exhaust emissions such as NOx, HC and CO. The investigations include numerical simulations and experiments on single cylinder research engine with variable valve timing. The simulations feature a combination of 0-D, Q-D, 1-D and 3-D models with detailed chemistry consideration.
Through the extensive investigation and parameter studies using 0-D, Q-D, 1-D and 3-D models the transfer of findings from the present work to similarly designed engines by Original Equipment Manufacturers (OEM) will be ensured.
The projected results of the project are:

  • An extensive database of measurements showing possible benefits of variable valve timing operation and its impact on engine performance parameters such as heat release and exhaust emissions will be demonstrated.
  • A simulations process will be developed that enable the analysis of the effects of variable valve timing on engine exhaust emissions. The Stochastic Reactor Model within full engine model will be calibrated and subsequently set-up for the simulation of engine performance parameters and exhaust emissions with respect to VVT strategy, and for the complete engine load-speed map. The methodology proposed will enable the optimisation of VVT strategy regarding minimisation of engine exhaust emissions.

 

Focus: Modelling emissions of Diesel engine combustion with variable valve timing.

Funding: Research Association for Combustion Engines eV

Project duration: 01.01.2018 - 30.04.2020

Contact: Christian Schnapp, M.Sc.

Abstract:

This project aims to develop a phenomenological 0D/1D-approach to simulate the formation of the in-engine raw emissions of unburnt hydrocarbons and carbon monoxide for diesel engines. The model should be able to predict the HC and CO emissions for both stationary and transient operating conditions. The results provided by the model for the HC and CO formation are not only relevant for the prediction of the emissions themselves and furthermore the exhaust after-treatment and the regeneration of the exhaust after-treatment system. In addition depending on the operating point these emissions are relevant to correctly predict the efficiency and therefore the fuel consumption of diesel engines.
To predict the formation of HC and CO the model has to represent the relevant inhomogeneities during the combustion in diesel engines. For this purpose, the locally lean and rich areas are especially important. Additionally, for the formation of HC the wall quenching, that is the flame quenching in close proximity to the combustion chamber wall, is relevant. In combination with highly simplified chemical reaction mechanisms the modelling of these inhomogeneities allow the prediction of the formation of HC and CO.

Focus: Simulation of the formation of raw emissions of unburned hydrocarbons and carbon monoxide for diesel engines.

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Abschlussbericht

Project duration: 01.03.2018 - 31.10.2020

Contact: Feyyaz Negüs, M.Sc. and Viktoria Kelich, M.Sc.

Project Partners:

RWTH Aachen, Institute for Combustion Engines (VKA)

TU Braunschweig, Institute for Combustion Engines (IVB)

TU Darmstadt, Institute for Combustion Engines and Automotive Powertrains (VKM)

Abstract:

CO2 targets in the range of 68 to 75gCO2/km are expected from 2025 onwards within the European Union. This ambitious goal will only be achieved with a great penetration depth of hybridized powertrains. From this derives the task for each manufacturer to develop a propulsion system with a favorable Cost-to-CO2-Benefit ratio. Integral part of such system will most likely be a spark ignited combustion engine. That engine has to deliver an overall efficiency close to the theoretical efficiency optimum in engine operating points relevant for hybrid operation strategies. Still an open point is the achievable maximum overall efficiency under real world conditions with an engine incorporating conventional, mature and therefore inexpensive technologies. Goal of the project is the optimization of the combustion engine aiming for an overall engine efficiency close to 45% in engine operation points relevant for operation of HEVs or PHEVs. Outcome of the project is a rating which technologies are most effective with regard to overall engine efficiency, bearing minimum risk and can preferably be used complementary to improve engine efficiency.

Focus: CO2 reduction

The study of the spark ignition engine for its efficiency by 0D/1D simulation.

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Homogenisation Model SI Engine

Project duration: 01.01.2017 - 30.06.2019

Contact: Sebastian Fritsch, M.Sc.

Abstract:

Due to numerous advantages, direct injection can be considered a standard technology in modern gasoline engines. Its influence on in-cylinder turbulence, however, cannot be accounted for in existing zero- and one-dimensional models. The objective of this project is thus to develop corresponding sub-models and to integrate them in existing turbulence, burn rate and cycle-to-cycle variation models. In this way, a valuable increase in predictive power can be achieved. The solution process follows the approach of the successful predecessor project. At first, the influence of direct injections on charge motion (e. g. tumble) is to be analyzed based on 3d-CFD calculations in order to enhance the existing turbulence model. Correspondingly, 3d-CFD simulations are used as reference to develop a phenomenological homogenization model based on key parameters of the gas exchange cycle, the enhanced charge motion and turbulence model and characteristic numbers (to be developed). The homogenization model then has to be integrated in an appropriate way into the existing burn rate and cycle-to-cycle variation models. As a result, improved models will be available that allow predictive simulations of the influence of direct injections for the first time in the 0d/1d domain. This enables, for instance, an efficient development of multiple injection strategies for improved mixture homogenization as well as accounting for differences in homogenization when using variable valve timings.

Focus: Development of a quasi-dimensional model describing the interaction of direct injection and charge motion as well as homogenisation of the trapped mass considering different gas exchange strategies

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Partially Premixed Diesel Combustion

Project Duration: 01.01.2019 - 31.12.2020

Contact: Dipl.-Ing. Hans-Jürgen Berner, Marvin Wahl, B.Sc., Viktoria Kelich, M.Sc.

Project Partner: ETH Zürich, Aerothermochemistry and Combustion Systems Laboratory (LAV)

Abstract:

The partially premixed compression ignition (PCCI) is regarded as a promising diesel combustion concept for extremely low emissions with high process controllability. For low load/rev engine operating points, PCCI has already demonstrated the simultaneous reduction of soot and NOx raw emissions and thus demonstrated a way out of the existing NOx/soot conflict of conventional diesel combustion. Current research & development in the field of diesel combustion, especially in optimization processes, is based on numerical methods. Reliable phenomenological combustion and ignition delay models have proven to be particularly suitable for parameter studies. However, most ignition delay models have been developed for conventional diesel combustion.

Therefore, in this project new ignition delay models shall be presented which predict the ignition delays for PCCI operation with multiple injections for the 0D simulation. For this purpose, measurements will be performed on a single-cylinder unit to characterize PCCI combustion and provide data for subsequent model generation and validation.

The work at the IFS will be carried out in cooperation with the ETH Zurich. There, 3D-CRFD simulation calculations with detailed chemical kinetics will be carried out in parallel and comprehensive combustion models will be added.

Project targets:
Creation of a simulation model for the predictive calculation of the combined physical-chemical ignition delay in partially homogeneous diesel combustion processes with multiple injection.

Funding:

CORNET - Collective Research Networking

BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

FVV - Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Water Injection in SI Engines

Project duration: 01.04.2017 - 30.11.2019

Contact: Antonino Vacca, M.Sc.

Project Partners:

TU Berlin, Institute of Land and Sea Transport Systems (VKM)

Brandenburg University of Technology Cottbus-Senftenberg, Institute for Electrical and Thermal Energy Systems, Chair of Thermodynamics/Thermal Process Engineering

Abstract:

Within this research project we develop modles and numerical methods, which allow the evaluation of engine developments with water injection. These will help to utilize the potential of water injection in spark ignition engines to optimize power and efficiency. Model extensions concentrate on the physics of water and emulsion sprays, the changed thermodynamic engine cycle, as well as the influence of high water concentrations on the reaction kinetics in the gas phase, as well in catalysts. The project applies 3D CFD and 1D/Q3D methods.
A comprehensive experimental data base will be established to support the model development. The particularly spray properties will be investigated in spray chambers and in a rapid compression machine. The latter will allow conditions close to the critical thermodynamic state of water sprays. Experiments in a single cylinder engine will analyse the thermodynamic properties of gases with high water content, and of expanding gases under simultanous water vaporisation. These experiments also allow to investigate changes in the reaction kinetics, through heat release and engine out emission concentration measurements. Representative experiments at a catalyst test bench will finally judge the influence of increased water concentrations on the reactivity of catalysts.
The utilizations of the developed methods and models will be demonstrated by the help of a regular engine model. The project delivers the comprehensive experimental data base, a detailed discription of all developed models and methods, comprehensive data for reaction kinetics for gas base and surface reactions and an extension of the FVV cylinder module. This extension is based on detailed 3D CFD and 1D/Q3D validation calculations.Focus: CO2 reduction

Evaluation of the potential und risks of the direct water injection to increase efficiency and load in spark-ignition engines.

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Water Injection in SI Engines II

Project duration: 01.10.2019 - 31.03.2022

Contact: Edoardo Rossi, M.Sc.

Project Partners:

TU Berlin, Institute of Land and Sea Transport Systems (VKM)

Brandenburg University of Technology Cottbus-Senftenberg, Institute for Electrical and Thermal Energy Systems, Chair of Thermodynamics/Thermal Process Engineering

Abstract:

The project FVV water injection in SI engines delivered an insight for the effects of water injection on the injector performance and in-cylinder thermodynamics and chemistry using single-cylinder experiments and simulations. However, there are still open question of the working group that should be answered by a follow-up project. The first topic is a more detailed understanding of the mixture formation with advanced injector technologies, e.g. 500 bar injection pressures, emulsion injection and multi-injection strategies. Potentials of modification of the hardware to increase the benefit of the water injection should be investigated and understood in detail. Further, the combination of water injection with variable valve timing and exhaust gas recirculation shall be investigated. The questions shall be answered how these technologies influence each other and what potentials of combination of these technologies are available over the engine map. The investigation of the effects of changes of exhaust gas composition and exhaust temperature due to water injection and exhaust gas recirculation on the emission conversion in Three-Way-Catalysts and Gasoline-Particle-Filters shall be understood more in detail and transferred to robust and reliable simulation models. The obtained knowledge and models can be used by the OEMs and suppliers to improve their product development, also with regard with future RDE legislation.

Focus: Evaluation of the potential und risks of the water injection to increase efficiency and load in spark-ignition engines

Funding: Research Association for Combustion Engines eV

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

 

Water Injection on Diesel Engines

Project duration: 01.11.2018 - 31.10.2020

Contact: Sebastian Welscher, M.Sc. and Antonino Vacca, M.Sc.

Project Partners: Karlsruhe Institute of Technology (KIT), IFKM

Abstract:

Against the backdrop of increasing climate awareness and the introduction of much stricter exhaust emission legislation, the further development of the diesel engine faces major challenges. In addition to reducing fuel consumption in order to maintain fleet consumption, emissions of pollutants must be reduced under more demanding conditions. These targets are increasingly difficult to achieve with conventional diesel engines based on the current state of technology. On the one hand, the complexity of the overall "diesel engine" system has already reached a very high level, which offers hardly any room for remarkable leaps in development. On the other hand, the above-mentioned objectives usually have opposing effects, so that a solution found is often only a compromise.

In order to defuse this conflict and to demonstrate new development potential, water injection in diesel engines is therefore being investigated as part of this research project. In the past, this technology has already been used successfully, especially in aircraft and ship engines. Currently, this technology is finding a growing application in the field of gasoline engines.

While the main focus in gasoline engines is on increasing performance, water injection in diesel engines is being investigated primarily with regard to pollutant emissions. Due to the lower peak temperatures caused by the evaporation of the water in the intake manifold or cylinder, internal engine nitrogen oxide production can be significantly reduced. In conjunction with other measures such as throttling the exhaust gas recirculation rate (EGR), positive effects on soot oxidation and efficiency can also be expected.

In order to correctly map potential effects and take them into account during development, it is necessary to make them available for engine simulation after a detailed investigation.

For this purpose, the correct modelling of the ignition delay and the combustion process as a function of the injected amount of water is particularly necessary in order to precisely calculate a modified diesel engine combustion, which in turn forms the basis for a correct mapping of pollutant emissions. If necessary, the models of the latter must also be adapted according to the results of the investigations.

After implementation of the findings into the 0D/1D simulation, the development of possible application strategies for water injection in real operation is planned. The basis for this are the newly created or adapted calculation models. An evaluation and potential analysis concludes the project.

The project is carried out in cooperation with the Institut für Kolbenmaschinen (IFKM) in Karlsruhe (Karlsruhe Institute of Technology, KIT). In parallel to the simulative investigations and modelling work of the Institut für Fahrzeugtechnik Stuttgart Stuttgart (IFS), extensive measurements will be carried out on a modified engine test bench. These results serve as a basis and extension of the understanding of the effects of water injection on diesel combustion and are included in the modelling and validation. IFS, on the other hand, works exclusively on the simulation scope of this project. The latter include modelling and simulation in the 0D/1D range as well as 3D-CFD investigations.

Focus:

  • Investigation, modelling and simulation of effects of water injection on diesel combustion
  • Development and investigation of possible application strategies for water injection in real operation

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

VVT for Diesel LNT Rich Purge

Project duration: 01.04.2017 - 31.07.2020

Contact: Michael Brotz, M.Sc. und Markus Maul, M.Sc.

Abstract:

The rich operation for LNT regeneration with a combustion air ratio of lambda ~ 0.95 is usually achieved by intake air throttling and high external EGR rates. This procedure leads to low combustion stability in the diesel engine at low engine load. For this reason, LNT regeneration below a certain load limit is not possible or very difficult. In conventional NEDC-based legislation, regeneration is therefore usually carried out in the EUDC part of the test. In RDE low-load operation, especially at low outside temperature and/or altitude, LNT regeneration poses a problem.

Variable valve lift strategies such as the exhaust secondary lift can significantly stabilise combustion at low load by means of hot internal EGR. As initial spot tests show, the higher process temperature curve results in increased formation of carbon monoxide (CO) and less formation of hydrocarbons (HC). This shift in the exhaust gas composition is advantageous for LNT regeneration.

The objective is to achieve improved and more flexible diesel LNT regeneration throughout the entire engine map with the aid of variable valve control strategies. Within the scope of the tests, it will be investigated whether discretely switchable valve lift curves are sufficient for optimum regeneration behaviour at low load, or whether a continuously variable system is required. Furthermore, it will be investigated whether the increase in soot particle emission can be reduced by a targeted design of the exhaust double lift strategy in combination with the inlet valve lift strategy.

The benefit lies in the evaluation of a technology module that may be relevant for the fulfilment of future RDE legislation. In previous FVV projects this potential of variable valve lift strategies has not been investigated.

Focus: Assessment of internal EGR by variable valve actuation with the aim to stabilize rich combustion for Diesel LNT rich purge at low engine loads

Funding: BMWi/AiF - Federal Ministry for Economic Affairs and Energy / German Federation of Industrial Research Associations.

For further information on the project, please also contact the Research Association for Combustion Engines (FVV).

Project duration: 01.05.2018 – 30.04.2021

Contact: Ralf Kleisch, M.Sc.

Abstract:

Today ongoing electrification of automobiles leads to a variety of different drivetrain architectures.

In particular hybrid powertrain configurations including an internal combustion engine and one or more electric machines, make up a majority of the possible architectures. In order to select

the right powertrain from this variety, based on the right choice of topology as well as the determination of the individual components, an optimization tool is needed which is able to evaluate and identify optimal powertrain concepts on the basis of specific driving demands.

To be able to handle the great variety of concepts, these optimal drive trains will be calculated in different stages.

The calculation steps will be carried out by the developed tool chain, which calculates a predefined driving request using different optimization algorithms for multiple drivetrain configurations and different degrees of granularity.

Focus: Simulation-based identification of optimal hybrid powertrain configurations regarding topology and component dimensioning

Funding: Promotionskolleg HYBRID

DiaMANT.Gefördert durch: Ministerium für Verkehr Baden-Württemberg

Projektpartner:

Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart - FKFS - Stadt Stuttgart - Stadt Ludwigsburg (Konsortialführer) - Technische Akademie Schwäbisch Gmünd - Stuttgarter Straßenbahnen AG (SSB) - Daimler AG - EvoBus GmbH

Ansprechpartner:

Lehrstuhl Kraftfahrzeugmechatronik

Herr Prof. Dr.-Ing. H.-C. Reuss

Dr.-Ing. Dan Keilhoff

Telefon +49 711 685-65743

Projektinhalte 

Roadshow in Baden-Württemberg zwecks Erklärung der Technik - Vorträge, Präsentationen, Experimente zum Anfassen und Verstehen der Technik. - Gespräche mit den Besucherinnen und Besuchern über das automatisiete, vernetzte und elektrische Fahren: Chancen, Risiken, Hoffnungen, eigene Erfahrungen. AP 2: Automatisierter Werksverkehr in einem Busdepot - Automatisieren von wiederkehrenden Betriebsfahrten. - Untersuchen der notwendigen technischen Maßnahmen und der Auswirkungen auf den Betriebsablauf. AP 3: Demonstrationsbetrieb eines automatisierten Shuttles in Ludwigburg - Automatisiertes Shuttle zur Anbindung des Bahnhofs an ein Industriegebiet. - Möglichkeit, den Betrieb eines solchen Fahrzeugs zu erleben. - Demonstrationsbetrieb, kein Linienbetrieb. - Begleitforschung: Befragung der Fahrgäste. Kernziele des Vorhabens sind - Technik des automatisierten, vernetzten und elektrischen Fahrens der Bevölkerung näher bringen. - Dialog mit den Menschen: Was erwarten sie? Was befürchten/erhoffen sie? Was glauben sie, zu wissen? - Technik erlebbar und anfassbar machen. 

Projektförderung: Fördermittelgeber Ministerium für Verkehr Baden-Württemberg

EVIAN. Gefördert durch: Bundesministerium für Bildung und Forschung.

Projektsteckbrief EVIAN

Projektlaufzeit: 01.04.2020 - 31.03.2021

Projektpartner:

Vector Informatik GmbH - Jiao Tong Universität Shanghai (SJTU) - TGOOD (CN)

Ansprechpartner

Lehrstuhl Kraftfahrzeugmechatronik Herr Prof. Dr-Ing. H.-C. Reuss

Dipl.-Ing. Chris Auer

Telefon +49 711-685-69456 

EVIAN: Electric Vehicle Intelligent Charging Technology R & D Combined with Electricity Network Adaptation and Battery Lifetime Factors

In diesem 2+2 Förderprojekt des BMBF forschen 2 chinesische und 2 deutsche Partner im Umfeld des Ladens von Elektrofahrzeugen. Dabei werden auf chinesischer Seite Big-Data Ansätze zur Optimierung der Ladevorgänge betrachtet. Die deutschen Partner fokussieren sich auf das Rückspeisen von Energie ins Netz und auf die kabellose Kommunikation beim Laden.
Kernziele des Vorhabens sind - Big Data-gesteuerte Ladestrategie und Entwicklung intelligenter Ladestationen. - Allgemeine Bedingungen und erforderliche Parameter für die Rückspeisung von Strom, um eine hohe Netzqualität zu gewährleisten . - Kommunikationsrahmen für den Lade-/Entladevorgang und Software für die Kommunikation zwischen Fahrzeug und Netz. - Test und Fehlerdiagnose. - Aufbau einer prototypischen Ladestation als Demonstrator und zum Nachweis der obigen Punkte.

Projektförderung: Bundesministerium für Bildung und Forschung (BMBF).

Projektlaufzeit 01.01.2016 bis 31.12.2020

Projektpartner MTS Systems Cooperation

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Ein neuer Ansatz zur Regelung des Fahrzeugdynamikprüfstands durch nichtlineare Modellfolgeregelung

Der Fahrzeugdynamikprüfstand (FDP) verfügt bereits je nach Betriebsmodus und Anwendung über unterschiedliche Steuerungs- und Regelungsansätze. Ein wichtiger Anwendungsfall ist dabei die Durchführung von realitätsnahen Fahrmanövern mit dem FDP. In diesem Forschungsprojekt soll ein neuer Ansatz zur Regelung des Fahrzeugdynamikprüfstands entwickelt werden, um die Reproduzierbarkeit zum Fahrversuch auf der Straße zu verbessern. Dabei soll die Erarbeitung zunächst in der Simulation stattfinden. Hierfür werden Fahrzeug- und Prüfstandsmodelle verschiedener Komplexitätsstufen erstellt und die Dynamik des Fahrzeugs auf der Straße mit der Dynamik auf dem Prüfstand verglichen. Aus den einhergehenden Erkenntnissen soll ein entsprechendes Regelungskonzept erarbeitet werden, welches in der Lage sein soll, die ganzheitliche 3D Fahrzeugdynamik auf der Straße mit dem Prüfstand zu reproduzieren. Die Idee dabei ist es, die Dynamik des Fahrzeugs auf dem Prüfstand durch nichtlineare Folgeregelung an eine gegebene Straßendynamik anzupassen. Um dieses Ziel zu erreichen, ist es notwendig ein echtzeitfähiges Fahrzeugmodell zu entwickeln, dass alle wesentlichen dynamischen Eigenschaften des Fahrzeugs abbilden kann. Dieses Modell soll innerhalb des erweiterten Regelungskonzepts unter anderem für den modellbasierten Regelungsentwurf verwendet werden. Gleichzeitig ist ein Regelungsverfahren notwendig, welches sowohl die notwendige Robustheit garantiert als auch vereinbar mit der Fahrzeugmodellierung ist. Eine holistische Betrachtung der Teilschritte Modellierung und Regelung ist deshalb vorteilhaft, da sie bei der Umsetzung des Regelungskonzepts voneinander abhängig sind und die Reglerperformance durch eine aneinander angepasste Entwicklung dieser Teilschritte verbessert werden kann.

Kernziele des Vorhabens sind

Methodenentwicklung für den Fahrzeugdynamikprüfstand zur Erhöhung der Vergleichbarkeit bzw. Übertragbarkeit zwischen dem Fahrversuch auf dem Fahrzeugdynamikprüfstand und dem klassischen Fahrversuch auf der Straße. Aufbau einer Simulationsumgebung und erste Analysen zur Systemdynamik des Fahrzeugdynamikprüfstands. 

Fördermittelgeber Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg Deutsche Forschungsgemeinschaft

Projektlaufzeit 01.01.2018 bis 31.12.2020

Projektpartner Deutsche Zentrum für Luft- und Raumfahrt e. V., Institut für Fahrzeugkonzepte

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Ganzheitliche, vernetzte Entwicklungsmethodik für innovative elektromotorische Fahrwerkkonzepte

Im Rahmen des Forschungsprojekts wird eine ganzheitliche Entwicklungsmethodik für innovative Fahrwerkkonzepte der Elektromobilität erarbeitet und exemplarisch angewandt. Dabei hat die Methode die inhärente Vernetzung der virtuellen und realen Fahrwerkentwicklung zum Ziel, um Kosten- sowie Zeitvorteile gegenüber konventionellen Entwicklungsmethodiken zu realisieren und bereits in den frühen Phasen der Entwicklung ein holistisches Fahrzeugsystemverständnis aufzubauen. Wesentliches Element der methodischen Fahrwerkentwicklung stellt der Fahrsimulator dar, der die effiziente Subjektivurteilsbildung virtuell konzipierter, elektrifizierter Fahrwerke ermöglicht.

Darüber hinaus soll das Projekt die methodische Integration eines innovativen Fahrzeugdynamikprüfstandes, wie er am IFS der Universität Stuttgart entsteht, aufzeigen. Hierbei wird insbesondere die Schnittstelle zur Einbindung des Prüfstandes in den Fahrwerkentwicklungsprozess beschrieben sowie die softwareseitigen und messtechnischen Anforderungen diskutiert. Die Entwicklung der methodischen Integration des Fahrzeugdynamikprüfstandes erfolgt im Rahmen des Projekts zunächst über ein vollfunktionsfähiges virtuelles Prüfstandmodell. Kernziele des Vorhabens sind Methodische Integration interdisziplinärer Modellierungsansätze und innovativer Prüfstandkonzepte in die virtuelle Entwicklung innovativer elektromotorischer Fahrwerkkonzepte mit besonderem Fokus auf die Gestaltung subjektiv wahrnehmbarer Fahreigenschaften

Projektförderung Fördermittelgeber Ministerium für Wirtschaft, Arbeit und Wohnungsbau des Landes Baden-Württemberg

Antriebstrangsynthese

Projektlaufzeit: 01.05.2018 – 30.04.2021

Ansprechpartner: Ralf Kleisch, M.Sc.

Projektbeschreibung:

Die fortschreitende Elektrifizierung von Fahrzeugen führt heute zu einer Vielzahl von unterschiedlichen Antriebsstrangarchitekturen. Insbesondere hybride Antriebsstrangkonfigurationen, die einen Verbrennungsmotor beinhalten und eine oder mehrere elektrische Maschinen, machen dabei einen Großteil der möglichen Architekturen aus.

Um den richtigen Antriebsstrang aus dieser Vielfalt, basierend auf der richtigen Wahl der Topologie sowie der Bestimmung der einzelnen Komponenten, auszuwählen, wird ein Optimierungswerkzeug benötigt, das in der Lage ist, die optimale Antriebskonzepte auf der Grundlage spezifischer Fahranforderungen zu bewerten und identifizieren. Um die Vielfalt der Konzepte beherrschen zu können, werden die optimalen Antriebsstränge in verschiedenen Stufen berechnet. Eine benutzerdefinierte Fahranforderung wird mit Hilfe der entwickelten Toolkette anhand verschiedener Optimierungsalgorithmen für mehrere Antriebsstrangkonfigurationen und unterschiedliche Granularitätsstufen berechnet.

Kernziele des Vorhabens:

Simulationsgestützte Ermittlung optimaler Hybrid-Antriebsstrangkonfigurationen hinsichtlich Topologie und Komponentendimensionierung

Fördermittelgeber: Promotionskolleg HYBRID

Teaching

The courses can be found under the heading "Teaching".

Your contact person

This image showsMichael Bargende
Prof. Dr.-Ing.

Michael Bargende

Holder of the Chair of Vehicle Drives

This image showsGisela Uhlig
 

Gisela Uhlig

Sekretariat Lehrstuhl Fahrzeugantriebe

To the top of the page