Institut für Fahrzeugtechnik Stuttgart (IFS)

Lehrstuhl Kraftfahrwesen

Die Eigenschaften des Gesamtfahrzeugs sowie deren Auslegung und Optimierung durch virtuelle Methoden steht im Fokus des Lehrstuhls für Kraftfahrwesen.

Lehrstuhlinhaber: Prof. Dr.-Ing. Andreas Wagner

Forschungsschwerpunkte

Neben der anwendungsorientierten Lehrtätigkeit im Bereich Kraftfahrwesen beschäftigt sich der Lehrstuhl vor allem mit den Eigenschaften des Gesamtfahrzeugs sowie deren Auslegung und Optimierung durch virtuelle Methoden. Zentrale Forschungsschwerpunkte sind dabei Fahrzeugaerodynamik und Windkanaltechnik, Fahrdynamik und Fahrkomfort, Fahrzeugakustik und -schwingungen sowie Thermomanagement im Experiment und in der Simulation.

Folgende Schwerpunkte werden vom Lehrstuhl für Kraftfahrwesen bearbeitet:

Forschungsprojekte

Autonomes und Vernetztes Fahren

Projektpartner:

Rheinisch-Westfälische Technische Hochschule Aachen - Technische Universität Braunschweig - Technische Universität Darmstadt - Technische Universität München - Universität Ulm - Karlsruher Institut für Technologie - Erweitert wird das Konsortium durch Zulieferer und KMUs aus den Bereichen Antrieb, Simulation, IT-Sicherheit, Embedded Software und Systeme, Kommunikation, Kartierung und Lokalisierung, Logistik und Elektromobilität.

Ansprechpartner:

Lehrstuhl Kraftfahrzeugmechatronik

Herr Prof. Dr.-Ing. H.-C. Reuss

Lehrstuhl Kraftfahrwesen Herr Prof. Dr.-Ing. A. Wagner

Dr.-Ing. Dan Keilhoff

Telefon +49 711 685-65743

Projektinhalte

Disruptive modulare Architektur für vielfältige, agile Fahrzeugkonzepte - Ein Paradigmenwechsel auf dem Weg zur automatisierten, elektrischen Mobilität

Auf der Grundlage eines modularen und skalierbaren Fahrzeugkonzeptes, bestehend aus Nutz- und Antriebseinheit, werden vollständig autonom fahrende elektrische Fahrzeuge entwickelt. Es wird eine neue disruptive, modulare und agile Fahrzeugarchitektur als Plattform konzipiert. Im Rahmen des Projektes wird die Entwicklung einer funktionalen Fahrzeugarchitektur, welche mit der Cloud, der Straßeninfrastruktur und Infobienen vernetzt ist, fokussiert. Weitere Schwerpunkte sind die Entwicklung generischer Sensormodule für die Umfelderfassung, eine flexibel erweiterbare, updatefähige und dienstorientierte Software- und Hardwarearchitektur sowie ein hochdynamischer Radnabenantrieb. Darüber hinaus werden auch Safety- und Security-Anforderungen an die Soft- und Hardwarearchitektur bei der Konzeption und Umsetzung berücksichtigt. Hier ist das Ziel, die Gesamtfunktion der Fahrzeuge über eine modulare Absicherung zu gewährleisten.

Projektförderung: Fördermittelgeber Bundesministerium für Bildung und Forschung

Fahrzeugaerodynamik und Windkanaltechnik

Projektlaufzeit: 3 Jahre (bis September 2022)

Projektpartner: Dr.-Ing. h. c. F. Porsche AG.

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner/

Prof. Dr.-Ing. J. Wiedemann

Dipl.-Ing. Nils Widdecke

nils.widdecke@ifs.uni-stuttgart.de 

Reduzierung des CO2 Ausstoßes durch aktive Strömungsbeeinflussung am Fahrzeugdiffusor

Der CO2 Ausstoß eines Fahrzeugs bzw. dessen Reichweite wird von den wirkenden Fahrwiderständen bestimmt. Die Luftwiderstandskraft steigt dabei quadratisch mit der Fahrgeschwindigkeit an und ist ab einer Fahrgeschwindigkeit von ungefähr 70 km/h die größte der wirkenden Kräfte. Ebenso ist die Luftwiderstandskraft proportional zu dem Produkt aus dem Widerstandskoeffizienten cw und der Stirnfläche Ax. Insbesondere SUVs und Geländewagen zeichnen sich durch eine Kombination aus großem cw und Ax aus. Zusätzlich unterliegen diese Fahrzeuge geometrischen Anforderungen, die u. a. Mindestmaße für den Bodenabstand und die Böschungswinkel vorgeben. Dies schränkt den Freiraum der aerodynamischen Optimierung der Grundform deutlich ein. Der Zusammenhang zwischen Geometrie und Strömungszustand lässt sich durch die aktive Strömungsbeeinflussung aufbrechen. Dafür wird der Strömung ein Impuls zugeführt. Durch den konvektiven Transport der Störung und deren Anwachsen kann eine Änderung des natürlichen Strömungszustands herbeigeführt werden. Das IFS arbeitet seit über 10 Jahren im Bereich der aktiven Strömungsbeeinflussung. So wurde z. B. eine quasi zweidimensionale Umströmung eines stumpfen Körpers mit einem Synthetischen Jets beeinflusst. Dessen Auslass wurde nahe der Hinterkante des Körpers platziert. Ein Synthetischer Jet wird durch eine schwingende Membran gebildet, die ein zyklisches Ein- und Ausströmen am Auslass erzeugt. Die Betriebsfrequenz und Amplitude steuert den zeitlichen Verlauf des zugeführten Impulses. Angewendet nahe der Abrisskante, kann die Scherschicht angeregt und der Luftwiderstand gesenkt werden. An einem detaillierten Fahrzeugmodell ist bisher keine wirksame Anwendung erfolgt. In dem vom Wirtschaftsministerium geförderten Forschungsvorhaben soll erstmals eine wirksame Strömungsbeeinflussung an einem detaillierten SUV Modell angewendet werden. Das Ziel ist die Senkung des Luftwiderstands und somit des CO2 Ausstoßes. Bedingt durch den erhöhten Bodenabstand und den großen hinteren Böschungswinkel, ist die Beeinflussung der unteren Scherschicht vielversprechend. Eine wirksame Anwendung hängt dabei maßgeblich von der detaillierten Kenntnis der unbeeinflussten Umströmung ab. Das Projekt wird durch die Dr. Ing. h.c. F. Porsche AG unterstützt. Kernziele des Vorhabens sind Untersuchung des Effekts einer hochfrequenten Anregung der Scherschicht; Untersuchung der Korrelation zwischen der Diffusorgeometrie und Scherschichtanregung; Energetische Bilanzierung der Strömungsbeeinflussung eines realistischen Fahrzeugs.

Projektförderung Fördermittelgeber Wirtschaftsministerium

Projektlaufzeit: 3 Jahre (bis 30.04.2022).

Projektpartner: Institut für Maschinenelemente, Universität Stuttgart

Ansprechpartner

Universität Stuttgart
IFS Lehrstuhl Kraftfahrwesen
Leitung: Prof. Dr.-Ing. Andreas Wagner

Herr Dr.-Ing. Timo Kuthada

Telefon +49 711 685-67615

Virtuelle Kupplung für Hochgeschwindigkeitszüge in Folgefahrt und Interaktion mit der Aerodynamik

Die virtuelle Kupplung ist ein vielversprechender Baustein zur Steigerung der Attraktivität und Wirtschaftlichkeit des Schienenverkehrs. Bei einer virtuellen Kupplung besteht keine physische Verbindung zwischen zwei oder mehreren Triebzügen, sondern es werden stattdessen kontinuierlich Daten zwischen den Zügen ausgetauscht. Die Triebzüge agieren dann zusammen als ein funktional vereinheitlichter Zugverband.
Ist eine standardisierte Kommunikation gegeben, so ist die virtuelle Kupplung auch ein Lösungsansatz zur Multikuppelbarkeit von Zügen, d.h. zur funktionalen Kuppelbarkeit mehrerer bauartfremder Triebzüge eines Herstellers oder verschiedener Hersteller. Durch die virtuelle Kupplung von Zügen kann außerdem der Streckendurchsatz erhöht werden, ohne gleichzeitig die höhere Flexibilität mehrerer kurzer Züge zu verlieren. Des Weiteren ergibt sich durch die dichte Folgefahrt der Triebzüge eines virtuell gekuppelten Zugverbandes eine mögliche Reduzierung des Luftwiderstands und damit des Energiebedarfs. Solche Konvois wurden bereits bei Nutzfahrzeugen untersucht, wobei teilweise beträchtliche Kraftstoffeinsparungen erreicht wurden.
Aus aerodynamischer Sicht ist die Interaktion zwischen den Zügen eines virtuell gekuppelten Zugverbands auch in Hinblick auf einen sicheren Betrieb, z.B. unter Einfluss von starken Seitenwinden, zu untersuchen.
Im Rahmen dieses Projekts wird durch den Projektpartner, das Institut für Maschinenelemente (IMA) der Universität Stuttgart, eine Risikoanalyse zur virtuellen Kupplung von Hochgeschwindigkeitszügen durchgeführt sowie ein Betriebskonzept erarbeitet. Am IFS werden sowohl das Potential zur Luftwiderstandsreduktion durch die dichte Folgefahrt von Hochgeschwindigkeitszügen als auch die Auswirkungen einer solchen Folgefahrt auf weitere aerodynamische Fragestellungen wie die Seitenwindstabilität untersucht.

Kernziele des Vorhabens sind

Die Untersuchung der Realisierbarkeit einer virtuellen Kupplung von Hochgeschwindigkeitszügen sowie die Bewertung des aerodynamischen Potentials zur Widerstandsreduzierung.

Fahrzeugdynamik und -technik

Projektlaufzeit 01.01.2016 bis 31.12.2020

Projektpartner MTS Systems Cooperation

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Ein neuer Ansatz zur Regelung des Fahrzeugdynamikprüfstands durch nichtlineare Modellfolgeregelung

Der Fahrzeugdynamikprüfstand (FDP) verfügt bereits je nach Betriebsmodus und Anwendung über unterschiedliche Steuerungs- und Regelungsansätze. Ein wichtiger Anwendungsfall ist dabei die Durchführung von realitätsnahen Fahrmanövern mit dem FDP. In diesem Forschungsprojekt soll ein neuer Ansatz zur Regelung des Fahrzeugdynamikprüfstands entwickelt werden, um die Reproduzierbarkeit zum Fahrversuch auf der Straße zu verbessern. Dabei soll die Erarbeitung zunächst in der Simulation stattfinden. Hierfür werden Fahrzeug- und Prüfstandsmodelle verschiedener Komplexitätsstufen erstellt und die Dynamik des Fahrzeugs auf der Straße mit der Dynamik auf dem Prüfstand verglichen. Aus den einhergehenden Erkenntnissen soll ein entsprechendes Regelungskonzept erarbeitet werden, welches in der Lage sein soll, die ganzheitliche 3D Fahrzeugdynamik auf der Straße mit dem Prüfstand zu reproduzieren. Die Idee dabei ist es, die Dynamik des Fahrzeugs auf dem Prüfstand durch nichtlineare Folgeregelung an eine gegebene Straßendynamik anzupassen. Um dieses Ziel zu erreichen, ist es notwendig ein echtzeitfähiges Fahrzeugmodell zu entwickeln, dass alle wesentlichen dynamischen Eigenschaften des Fahrzeugs abbilden kann. Dieses Modell soll innerhalb des erweiterten Regelungskonzepts unter anderem für den modellbasierten Regelungsentwurf verwendet werden. Gleichzeitig ist ein Regelungsverfahren notwendig, welches sowohl die notwendige Robustheit garantiert als auch vereinbar mit der Fahrzeugmodellierung ist. Eine holistische Betrachtung der Teilschritte Modellierung und Regelung ist deshalb vorteilhaft, da sie bei der Umsetzung des Regelungskonzepts voneinander abhängig sind und die Reglerperformance durch eine aneinander angepasste Entwicklung dieser Teilschritte verbessert werden kann.

Kernziele des Vorhabens sind

Methodenentwicklung für den Fahrzeugdynamikprüfstand zur Erhöhung der Vergleichbarkeit bzw. Übertragbarkeit zwischen dem Fahrversuch auf dem Fahrzeugdynamikprüfstand und dem klassischen Fahrversuch auf der Straße. Aufbau einer Simulationsumgebung und erste Analysen zur Systemdynamik des Fahrzeugdynamikprüfstands. 

Fördermittelgeber Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg Deutsche Forschungsgemeinschaft

Projektlaufzeit 01.01.2018 bis 31.12.2020

Projektpartner Deutsche Zentrum für Luft- und Raumfahrt e. V., Institut für Fahrzeugkonzepte

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Im Rahmen des Forschungsprojekts wird eine ganzheitliche Entwicklungsmethodik für innovative Fahrwerkkonzepte der Elektromobilität erarbeitet und exemplarisch angewandt. Dabei hat die Methode die inhärente Vernetzung der virtuellen und realen Fahrwerkentwicklung zum Ziel, um Kosten- sowie Zeitvorteile gegenüber konventionellen Entwicklungsmethodiken zu realisieren und bereits in den frühen Phasen der Entwicklung ein holistisches Fahrzeugsystemverständnis aufzubauen. Wesentliches Element der methodischen Fahrwerkentwicklung stellt der Fahrsimulator dar, der die effiziente Subjektivurteilsbildung virtuell konzipierter, elektrifizierter Fahrwerke ermöglicht.

Darüber hinaus soll das Projekt die methodische Integration eines innovativen Fahrzeugdynamikprüfstandes, wie er am IFS der Universität Stuttgart entsteht, aufzeigen. Hierbei wird insbesondere die Schnittstelle zur Einbindung des Prüfstandes in den Fahrwerkentwicklungsprozess beschrieben sowie die softwareseitigen und messtechnischen Anforderungen diskutiert. Die Entwicklung der methodischen Integration des Fahrzeugdynamikprüfstandes erfolgt im Rahmen des Projekts zunächst über ein vollfunktionsfähiges virtuelles Prüfstandmodell. Kernziele des Vorhabens sind Methodische Integration interdisziplinärer Modellierungsansätze und innovativer Prüfstandkonzepte in die virtuelle Entwicklung innovativer elektromotorischer Fahrwerkkonzepte mit besonderem Fokus auf die Gestaltung subjektiv wahrnehmbarer Fahreigenschaften

Projektförderung Fördermittelgeber Ministerium für Wirtschaft, Arbeit und Wohnungsbau des Landes Baden-Württemberg

Projektlaufzeit 01.07.2017 bis 30.06.2020

Projektpartner Audi AG

Ansprechpartner:

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Entwicklung einer Methode zur virtuellen, robusten Basisapplikation des Stabilitätssystems

Die heutige Fahrzeugentwicklung weist die Tendenz zu immer kürzeren Entwicklungszyklen bei einer gleichzeitig stetig steigenden Anzahl von vernetzten und wechselwirkenden Fahrwerkregelsystemen auf. Daraus resultiert eine umfassende Fahrzeugvarianz sowie eine umfangreiche Produktkomplexität. Um diesen Rahmenbedingungen Rechnung zu tragen, werden zukünftig vermehrt virtuelle Methoden einzusetzen sein, um zum einen die Komplexität und die Varianz zu beherrschen und zum anderen eine hohe Produktqualität sicherzustellen. Im Rahmen des Forschungsprojekts ist ein durchgängiger, virtueller Entwicklungsprozess für Fahrzeuge mit Bremsregelsystemen zu gestalten, der die speziellen Anforderungen von Bremsregelsystemen in allen Projektphasen berücksichtigt. Kernziele des Vorhabens sind Definition eines durchgängigen Entwicklungsprozesses für Fahrzeuge mit Bremsregelsystemen; Entwicklung der dafür notwendigen Methoden: Formale und durchgängige Prozessbeschreibung in jeder Phase des V-Modells; Parameterstudien auf Fahrzeug-, Funktions- und Systemebene; Robustheitsuntersuchungen.

Projektlaufzeit 01.04.2016 bis 31.03.2019

Projektpartner AUDI AG

Ansprechpartner

Lehrstuhl Kraftfahrwesen

Prof. Dr.-Ing. Andreas Wagner

Dr.-Ing. Jens Neubeck

Telefon +49 711 685-65701

Entwicklung von Methoden zur robusten Fahrwerkregelsystemauslegung in der frühen Entwicklungsphase

Die aktuelle, vornehmlich hardwarebasierte Entwicklung von Fahrwerkregelsystemen stößt mit steigender Fahrwerkskomplexität und -varianz zunehmend an ihre Grenzen. Sowohl die Auslegung in der frühen Entwicklungsphase, als auch die seriennahe Applikation erfordern einen erhöhten Zeitaufwand oder sind ohne virtuelle Methoden nicht leistbar. Der Fokus des Projekts liegt in der Entwicklung von Prozessen, Methoden und Tools zur Integration der virtuellen Entwicklung in den Produktentstehungsprozess. Hierzu wird eine Simulationsumgebung für vernetzte Fahrwerksfunktionen und -regelsysteme aufgebaut und validiert. Zur Analyse von Wechselwirkungen auf Fahrzeug-, Funktions- und Systemebene werden etablierte Algorithmen der Sensitivitätsanalyse herangezogen und für den Anwendungsfall modifiziert. Mit diesen Werkzeugen und diesem Wissen wird die virtuelle Fahrwerkregelsystemauslegung, -bewertung und -applikation zielgerichtet durchgeführt bzw. unterstützt. Durch diese Verzahnung von hardwarenaher und virtueller Entwicklung lassen sich die Entwicklungsqualität und -effizienz nachhaltig steigern. Kernziele des Vorhabens sind Entwicklung und Validierung Simulationsumgebung für vernetzte Fahrwerksfunktionen, Integration und Bewertung von Sensitivitätsanalysealgorithmen; Funktions- und Systemspezifikation sowie Fahrwerkregelsystemapplikation, Weiterentwicklung des Fahrwerkregelsystementwicklungsprozesses um diese virtuellen Methoden.

Projektförderung Fördermittelgeber AUDI AG

Lehrangebot

Das Lehrangebot finden Sie in der Rubrik "Lehre"

Publikationen

Hier geht es zu den Publikationen

Ihr/e Ansprechpartner/in

Dieses Bild zeigt  Andreas Wagner
Prof. Dr.-Ing.

Andreas Wagner

Inhaber des Lehrstuhls Kraftfahrwesen- Geschäftsführender Direktor IFS

 

N. N.

Zum Seitenanfang